Exercise 14

For the following exercises, find the domain, range, and all zeros/intercepts, if any, of the functions.

$$
f(x)=\frac{x}{x^{2}-16}
$$

Solution

$f(x)$ is a rational function, so the domain is the set of all x except the values where the denominator is zero.

$$
\begin{gathered}
x^{2}-16 \neq 0 \\
(x+4)(x-4) \neq 0 \\
x \neq\{-4,4\}
\end{gathered}
$$

Therefore, the domain is $\{x \mid x \neq \pm 4\} . x=-4$ and $x=4$ are the vertical asymptotes. $f(x)$ is continuous between these vertical asymptotes, so $f(x)$ takes on all values between

$$
\begin{aligned}
f(-3.999) & =\frac{-3.999}{(-3.999)^{2}-16} \approx 499.9 \\
f(0) & =0 \\
f(3.999) & =\frac{3.999}{(3.999)^{2}-16} \approx-499.9 .
\end{aligned}
$$

Choosing values even closer to ± 4, such as $x=-3.99999$ or $x=+3.99999$, gives even larger values for $f(x)$. Therefore, the range is $\{y \mid-\infty<y<\infty\}$. Zeros occur where the numerator is zero.

$$
f(x)=\frac{x}{x^{2}-16}=0 \quad \Rightarrow \quad x=0
$$

The one x - and y-intercept is $(0,0)$.

Below is a graph of $f(x)$ versus x to confirm these results.

